

UNIT III

LINEAR DATA STRUCTURES

Arrays and its representations – Stacks and Queues – Linked lists – Linked list-based

implementation of Stacks and Queues – Evaluation of Expressions – Linked list based polynomial

addition.

INTRODUCTION
Definition

Data structure is a particular way of organizing, storing and retrieving data, so that it can be used
efficiently. It is the structural representation of logical relationships between elements of data.

Where data structures are used? ▪ Data structures are used in almost every program or software system. Different kinds of data structures
are suited to different kinds of applications, and some are highly specialized to specific tasks.

▪ Applications in which data structures are applied extensively

 o Compiler design (Hash tables) o Operating system
 o Database management system (B+Trees) o Statistical analysis package
 o Numerical analysis (Graphs) o Graphics

o Artificial intelligence o Simulation

Classification of data structure

▪ Primitive Data Structure - Primitive data structures are predefined types of data, which are supported

by the programming language. These are the basic data structures and are directly operated upon by the
machine instructions, which is in a primitive level.

▪ Non-Primitive Data Structure - Non-primitive data structures are not defined by the programming

language, but are instead created by the programmer. It is a more sophisticated data structure
emphasizing on structuring of a group of homogeneous (same type) or heterogeneous (different type)
data items.

▪ Linear data structure- only two elements are adjacent to each other. (Each node/element has a

single successor) o Restricted list (Addition and deletion of data are restricted to the ends of the list)

▪

✓ Stack (addition and deletion at top end)

✓ Queue (addition at rear end and deletion from front end)

o General list (Data can be inserted or deleted anywhere in the list: at the beginning, in the middle or
at the end) ▪ Non-linear data structure- One element can be connected to more than two adjacent elements.(Each

node/element can have more than one successor)

o Tree (Each node could have multiple successors but just one predecessor)
o Graph (Each node may have multiple successors as well as multiple predecessors)

Note - Array and Linked list are the two basic structures for implementing all other ADTs.

.

MODULARITY ▪ Module- A module is a self-contained component of a larger software system. Each module is a logical unit
and does a specific job. Its size kept small by calling other modules.

▪ Modularity is the degree to which a system's components may be separated and recombined. Modularity

refers to breaking down software into different parts called modules.

▪ Advantages of modularity

o It is easier to debug small routines than large routines.
o Modules are easy to modify and to maintain.

o Modules can be tested independently.
o Modularity provides reusability.

o It is easier for several people to work on a modular program simultaneously.

ABSTRACT DATA TYPE

What is Abstract Data Type (ADT)? ▪ ADT is a mathematical specification of the data, a list of operations that can be carried out on that data. It
includes the specification of what it does, but excludes the specification of how it does. Operations on set
ADT: Union, Intersection, Size and Complement.

▪ The primary objective is to separate the implementation of the abstract data types from their function. The

program must know what the operations do, but it is actually better off not knowing how it is done. Three
most common used abstract data types are Lists, Stacks, and Queues.

▪ ADT is an extension of modular design. The basic idea is that the implementation of these operations is
written once in the program, and any other part of the program that needs to perform an operation on the
ADT can do so by calling the appropriate function. If for some reason implementation details need to
change, it should be easy to do so by merely changing the routines that perform the ADT operations. This
change, in a perfect world, would be completely transparent to the rest of the program.

▪ Examples of ADT: Stack, Queue, List, Trees, Heap, Graph, etc.

Benefits of using ADTs or Why ADTs

o Code is easier to understand. Provides modularity and reusability.

o Implementations of ADTs can be changed without requiring changes to the program that uses the ADTs.

LIST ADT

▪ List is a linear collection of ordered elements. General form of the list of size N is: A0, A1, …, AN-1

o Where A1 - First element
o If the element at position 'i' is Ai then its successor is Ai+1 and its predecessor is Ai-1.

▪ Various operations performed on a List ADT

o Insert (X,5)- Insert the element X after the position 5.
o Delete (X)- The element X is deleted.
o Find (X) - Returns the position of X
o Next (i) - Returns the position of its successor element i+1.

o Previous (i)- Returns the position of its Predecessor element i-1.
o PrintList - Displays the List contents.
o MakeEmpty - Makes the List empty.

Implementation of List ADT

o Array implementation o Linked List implementation o Cursor implementation

ARRAY IMPLEMENTATION OF LIST ADT ▪ An array is a collection of homogeneous data elements described by a single name. Each element of an

array is referenced by a subscripted variable or value, called subscript or index enclosed in parenthesis.
In array implementation, elements of list are stored in contiguous cells of an array. Find Kth operation
takes constant time. PrintList, Find operations take linear time.

▪ Advantages

 - Searching an array for an individual element can be very efficient
 - Fast, random access of elements.

▪ Limitations-

 Array implementation has some limitations such as

1. Maximum size must be known in advance, even if it is dynamically allocated.
2. The size of array can’t be changed after its declaration (static data structure). i.e., the size is fixed.

3. Data are stored in continuous memory blocks.
4. The running time for Insertion and deletion of elements is so slow. Inserting and deletion requires

shifting other data in the array. For example, inserting at position 0 requires first pushing the entire array
down one spot to make room, whereas deleting the first element requires shifting all the elements in the
list up one, so the worst case of these operations is O(n). On average, half the list needs to be moved for
either operation, so linear time is still required.

5. Memory is wasted, as the memory remains allocated to the array throughout the program execution even
few nodes are stored.

 Deleting an item

Type Declarations
#define Max 10
int A[Max],N;
Routine to insert an Element in the specified position

void insert(int x, int p, int A[], int N)

{
int i;
if(p==N)

printf(“Array Overflow”);
else
{

for(i=N-1;i>=p-1;i--)
A[i+1]=A[i];
A[p-1]=x;
N=N+1;

}
}

Routine to delete an Element in the specified

int deletion(int p, int A[],int N)

{
int Temp;
if(p==N)

Temp=A[p-1];
else

{
Temp=A[p-1];
For(i=p-1;i<=N-1;i++)

A[i]=A[i+1];
}
N=N-1;
return Temp;

}

Find Routine
void Find (int X)
{

int i,f=0;
for(i=0;i<N;i++)

if(a[i]==x)
{

f=1;
break;

}
if (f==1)

printf(“Element found”);
else

printf(“Element not found”);
}

STACK
Definition

Stack is a linear list in which elements are added and removed from only one end, called the top. It is a

"last in, first out" (LIFO) data structure. At the logical level, a stack is an ordered group of homogeneous
items or elements. Because items are added and removed only from the top of the stack, the last element to be
added is the first to be removed. Stacks are also referred as "piles" and "push-down lists".

Operations on stacks

▪ Push - Inserts new item to the top of the stack. After the push, the new item becomes the top.

▪ Pop - Deletes top item from the stack. The next older item in the stack becomes the top.

▪ Top - Returns a copy of the top item on the stack, but does not delete it.

▪ MakeEmpty - Sets stack to an empty state.

▪ Boolean IsEmpty - Determines whether the stack is empty. IsEmpty should compare top with -1.

▪ Boolean IsFull - Determines whether the stack is full. IsFull should compare top with MAX_ITEMS -
1.

Conditions

▪ Stack overflow - The condition resulting from trying to push an element onto a full stack.

▪ Stack underflow - The condition resulting from trying to pop an element from an empty stack.

New item pushed on Stack

Two items popped from Stack

APPLICATIONS OF STACKS

▪ Recursion - Example, Factorial, Tower of Hanoi.

▪ Balancing Symbols, i.e., finding the unmatched/missing parenthesis. For example, ((A+B)/C and

(A+B)/C). Compilers often use stacks to perform syntax analysis of language statements.

▪ Conversion of infix expression to postfix expression and decimal number to binary number.

▪ Evaluation of postfix expression.

▪ Backtracking- For example, 8-Queens problem.

▪ Function calls - When a call is made to a new function, all the variables local to the calling routine need to
be saved by the system, since otherwise the new function will overwrite the calling routine's variables.
Similarly the current location in the routine must be saved so that the new function knows where to go after
it is done. For example, the main program calls operation A, which in turn calls operation B, which in turn
calls operation C. When C finishes, control returns to B; when B finishes, control returns to A; and so on.
The call-and-return sequence is essentially a LIFO sequence, so a stack is the perfect structure for tracking
it.

Implementations of stack

1. Array implementation of stack
2. Linked list implementation of stack

Array implementation of stack

Stack can be represented using one dimensional array and it is probably the more popular solution.

Here the stack is of fixed size. That is maximum limit for storing elements is specified. Once the maximum
limit is reached, it is not possible to store the elements into it. So array implementation is not flexible and not an
efficient method when resource optimization is concerned.

. Push and Pop operation

Array implementation of Stack
#include<stdio.h>
#include<conio.h>
#define MAX 5

void push();
void pop();
void display();
int stack[MAX], top=-1, item;
void push()
{

if(top == MAX-1)
printf("Stack is full");

else
{

printf("Enter item: ");
scanf("%d",&item);
top++;
stack[top] = item;
printf("Item pushed = %d", item);

}
}

void pop()
{

if(top == -1)
printf("Stack is empty");
else
{

item = stack[top];
top--;
printf("Item popped = %d", item);

}
}

void display()
{

int i;
if(top == -1)

printf("Stack is empty");
else
{

for(i=top; i>=0; i--)
printf("\n %d", stack[i]);

}
}

QUEUE (LINEAR QUEUE)
➢ Definition

A queue is an ordered group of homogeneous items or elements, in which new elements are added at

one end (the “rear”) and elements are removed from the other end (the “front”). It is a "First in, first out"
(FIFO) linear data structure. Example, a line of students waiting to pay for their textbooks at a university
bookstore.

➢ Types of Queues

▪ Linear queue

▪ Circular queue

▪ Double ended queue (Deque)

o Input restricted deque o
Output restricted deque

▪ Priority queue

➢ Operations on Queue

▪ Enqueue -Insertsan itemat the rear end of the queue.

▪ Dequeue- Deletesan item at the front end of the queue and returns.

➢ Conditions

▪ Queue overflow - The condition resulting from trying to enqueue an element onto a full Queue.

▪ Queue underflow - The condition resulting from trying to dequeue an element from an empty Queue.

➢ Implementation of Queue

1. Array implementation

2. Linked list implementation
o Array and linked list implementations give fast O(1) running times for every operation

➢ Array implementation of Linear Queue

 0 1 2 3 4

Empty Queue F = R = -

1

 10

 0 1 2 3 4

 ^^

F R

After Enqueue (10)
10 3
0 1 2 3 4

^ ^

F R

After Enqueue (3)
10 3 41

0 1 2 3 4

^ ^

F R

After Enqueue (41)
3 41

0 1 2 3 4

^ ^

F R

After Dequeue ()
3 41 76

0 1 2 3 4

^ ^

F R

After Enqueue (76)

 3 41 76 66

0 1 2 3 4

 ^ ^

 F R

After Enqueue (66)
41 76 66

0 1 2 3 4

^ ^

F R

After Dequeue ()

▪ There is one potential problem with array implementation. From the above queue, now if we attempt to add

more elements, even though 2 queue cells are free, the elements cannot be inserted. Because in a queue,
elements are

always inserted at the rear end and hence rear points to last location of the queue array Q[4]. That is queue is
full (overflow condition) though it is empty.

▪ The simple solution is that whenever front or rear gets to the end of the array, it is wrapped around to the

beginning. This is known as a circular array implementation.

Array implementation of Linear Queue
#include <stdio.h>
#include<conio.h>

#define MAX 3

void enqueue();
void dequeue();
void display();

int queue[MAX], rear=-1, front=-1, item;

void enqueue()
{

if(rear == MAX-1)
printf("Queue is full");

else
{

printf("Enter item : ");
scanf("%d", &item);
if (rear == -1 && front == -1)

rear = front = 0;
else

rear = rear + 1;
queue[rear] = item;
printf("Item enqueued : %d", item);

}
}

void dequeue()
{

if(front == -1)
printf("Queue is empty");
else
{

item = queue[front];
if (front == rear)

front = rear = -1;
else

front = front + 1;
printf("Item dequeued : %d", item);

}
}
void display()
{

int i;
if(front == -1)

printf("Queue is empty");
else

for(i=front; i<=rear; i++)

printf("%d ", queue[i]);
}

Circular Queue

▪ In circular queues the elements Q[0],Q[1],Q[2] Q[n – 1] is represented in a circular fashion with Q[1]

following Q[n]. A circular queue is one in which the insertion of a new element is done at the very first
location of the queue if the last location at the queue is full.

▪ Initially Front = Rear = -1. That is, front and rear are at the same position.

▪ At any time the position of the element to be inserted will be calculated by the relation: Rear = (Rear + 1)

% SIZE

▪ After deleting an element from circular queue the position of the front end is calculated by the relation:

Front= (Front + 1) % SIZE.

▪ After locating the position of the new element to be inserted, rear, compare it with front. If Rear = Front,
the queue is full and cannot be inserted anymore.

▪ No of elements in a queue = (Rear – Front + 1) % N

Deque - Double Ended QUEeue
Definition

A deque is a homogeneous list in which inserted and deleted operations are performed at either ends of

the queue. That is, we can add a new element at the rear or front end and also we can remove an element from
both front and rear end. Hence it is called double ended queue. The most common ways of representing deque
are: doubly linked list, circular list.

➢ Types of deques

1. Input restricted deque
2. Output restricted deque

✓ An input restricted deque is a deque, which allows insertion at only 1 end, rear end, but allows deletion at

both ends, rear and front end of the lists.

✓ An output-restricted deque is a deque, which allows deletion at only one end, front end, but allows
insertion at both ends, rear and front ends, of the lists.

 .

.

Priority Queue
➢ Definition

 ▪ Priority Queue is a queue where each element is assigned a priority. The priority may implicit (decided by
its value) or explicit (assigned). In priority queue, the elements are deleted and processed by following
rules.

o An element of higher priority is processed before any element of lower priority.

o Two elements with the same priority are processed according to the order in which they were
inserted to the queue.

▪ Example for priority queue:

o In a telephone answering system, calls are answered in the order in which they are received;
o Hospital emergency rooms see patients in priority queue order; the patient with the most severe

injuries sees the doctor first.

Queue of people with priority

▪ A node in the priority queue will contain Data, Priority and Next field. Data field will store the actual

information; Priority field will store its corresponding priority of the data and Next will store the address of
the next node.

▪ When an element is inserted into the priority queue, it will check the priority of the element with the
element(s) present in the linked list to find the suitable position to insert. The node will be inserted in such a
way that the data in the priority field(s) is in ascending order. We do not use rear pointer when it is
implemented using linked list, because the new nodes are not always inserted at the rear end.

➢ Types of priority queues

1. Ascending priority queue - It is a queue in which items can be inserted arbitrarily (in any order) and from

which only the smallest item can be deleted first.
2. Descending priority queue - It is a queue in which items can be inserted arbitrarily (in any order) and from

which only the largest item can be deleted first.

Applications of queue

 ▪ When jobs are submitted to a printer, they are arranged in order of arrival. Thus, essentially, jobs sent to a
line printer are placed on a queue.

▪ Virtually every real-life line is (supposed to be) a queue. For instance, lines at ticket counters are queues,

because service is first-come first-served.

▪ Another example concerns computer networks. There are many network setups of personal computers in

which the disk is attached to one machine, known as the file server. Users on other machines are given
access to files on a first-come first-served basis, so the data structure is a queue.

▪ Calls to large companies are generally placed on a queue when all operators are busy.

▪ There are several algorithms that use queues to solve problems easily. For example, BFS, Binary tree

traversal etc.

▪ Round robin techniques for processor scheduling is implemented using queue.

LINKED LIST

Definition
Linked list is adynamic data structure which is an ordered collection of

homogeneous dataelements called nodes, in which each element contains two
parts: data or Info and one or more links. The data holds the application data to
be processed. The link contains (the pointer) the address of the next element in
the list.

 .

.

Why Linked List?
▪ Even though searching an array for an individual element can be very efficient, array has some

limitations. So arrays are generally not used to implement Lists.

Advantages of Linked List
1. Linked list are dynamic data structures - The size is not fixed. They can grow or shrink during the

execution of a program.
2. Efficient memory utilization - memory is not pre-allocated. Memory is allocated, whenever it is

required and it is de-allocated whenever it is not needed. Data are stored in non-continuous memory
blocks.

3. Insertion and deletion of elements are easier and efficient. Provides flexibility. No need to shift
elements of a linked list to make room for a new element or to delete an element.

Disadvantages of Linked List

1. More memory - Needs space for pointer (link field).

2. Accessing arbitrary element is time consuming. Only sequential search is supported not binary

search.

Operations on Linked List

The primitive operations performed on the linked list are as follows
1. Creation- This operation is used to create a linked list. Once a linked list is created with one node,

insertion operation can be used to add more elements in a node.
2. Insertion- This operation is used to insert a new node at any specified location in the linked list. A

new node may be inserted,
✓ At the beginning of the linked list,

✓ At the end of the linked list,

✓ At any specified position in between in a linked list.

3. Deletion- This operation is used to delete an item (or node) from the linked list. A node may be
deleted from the,
✓ Beginning of a linked list,

✓ End of a linked list,

✓ Specified location of the linked list.

4. Traversing - It is the process of going through all the nodes from one end to another end of a linked
list. In a singly linked list we can visit the nodes only from left to right (forward traversing). But in
doubly linked list forward and backward traversing is possible.

5. Searching- It is the process finding a specified node in a linked list.
6. Concatenation- It is the process of appending the second list to the end of the first list. Consider a

list A having n nodes and B with m nodes. Then the operation concatenation will place the 1st node
of B in the (n+1) the node in A. After concatenation A will contain (name) nodes.

Types of linked list

1. Singly linked list or Linear list or One-waylist

2. Doubly linked list or Two-way list

3. Circular linked list

4. Doubly circular linked list

SINGLY LINKED LIST
➢ Definition

In singly linked list, each element (except the first one) has a unique predecessor, and each

element (except the last one) has a unique successor. Each node contains two parts: data or Info and
link. The data holds the application data to be processed. The link contains the address of the next node
in the list. That is, each node has a single pointer to the next node. The last node contains a NULL
pointer indicating the end of the list.

Sentinel Node

▪ It is also called as Header node or Dummy node.

▪ Advantages

o Sentinel node is used to solve the following problems
✓ First, there is no really obvious way to insert at the front of the list from the definitions

given.

✓ Second, deleting from the front of the list is a special case, because it changes the start of
the list; careless coding will lose the list.

✓ A third problem concerns deletion in general. Although the pointer moves above are simple,
the deletion algorithm requires us to keep track of the cell before the one that we want to
delete.

▪ Disadvantages

o It consumes extra space.

➢ Insertion

a. Creating a newnode from empty List

b. Inserting a node to the front of list

c. Inserting a node in the middle

d. Inserting a node to the end of list

➢ Deletion

a. Inserting a node to the front of list

b. Deleting the middle node

c. Deleting the last node

Singly linked list implementation
Type Declarations
struct node
{

int data;
struct node *next;

}*head=NULL:
typedef struct Node *position;

Routine to check whether the List is empty
 /* Returns 1 if List is empty */
int IsEmpty (position head)
{

if (head->next == NULL)
return(1);

}

Routine to check whether the current position is last
/* Returns 1 if P is the last position in L */
int IsLast (position p)
{

if (p->Next == NULL)
return(1);

}

Find Routine
/* Returns the position of X in L; NULL if not found */
Position Find (int X)
{

position p;
P = head->next;
while((p!= NULL) && (p->data != X))

p = p->next;
return P;

}

FindPrevious Routine
/* Returns the previous position of X in L */

position FindPrevious (int X)
{

position P;
P = head;
while((P->Next!= NULL) && (P->Next->data != X))

P = P->Next;

return P;
}

FindNext Routine
/* Returns the position of X in L; NULL if not found */
Position Find (int X)
{

position p;
P = head->next;
while((p!= NULL) && (p->data != X))

p = p->next;
return P->next;

}

void traversal ()
{

position p;
P = head->next;
while(p!= NULL)
{

printf(p->data);
p = p->next;

}
}

Insertion
Inserting a node to the front of list

Insert at Beginning

void Insert_beg (int X)

{

position NewNode;

NewNode = malloc (sizeof(struct Node));
if(NewNode != NULL)

{

NewNode->data = X;
NewNode->next = L->Next;

head->next = NewNode;

}

}

b.Inserting a node in the middle

Insertion at Middle

/* Insert element X after position P */

void Insert_mid (int X, position P)

{

position NewNode;

NewNode = malloc (sizeof(struct Node));

if(NeWNode != NULL)

{

NewNode->data = X;

NewNode->next = P->next;

P->next = NewNode;

}
}

c. Inserting a node to the end of list

Insert at Last

void Insert_last (int X)
{

position NewNode,P;

NewNode = malloc (sizeof(struct Node));

if(NewNode != NULL)

{

while(P->next!=NULL)
P = P->next;

NewNode->data = X;
NewNode->next = NULL; P-
>next = NewNode;

}

}

➢ Deletion

Deleting a node to the front of list

Delete at Beginning

void Delete_beg ()

{

position TempCell;
if(head->next!=NULL)

{

TempCell = head->next;

head->next = TempCell ->next;

free(TempCell);

}

}

Deleting the middle node

Delete at Middle Routine

void Delete (int X)

{

position P, TempCell;

P = FindPrevious(X);

TempCell = P->next;

P->Next = TempCell ->Next;

free(TempCell);

}

Deleting the last node

Delete at Last

void Delete_last ()

{

position TempCell,P;

while(P->next->next!=NULL)
P =P->next;
TempCell = P->next;
P->next = NULL;
free(TempCell);

}

CIRCULAR LINKED LIST
Why circular linked list? Or advantages over singly linked list

 ▪ With a singly linked list structure, given a pointer to a node anywhere in the list, we can access all the nodes
that follow but none of the nodes that precede it. We must always have a pointer to the beginning of the list
to be able to access all the nodes in the list.In a circular linked list, every node is accessible from a given
node.

▪ In deletion of singly linked list, to find the predecessor requires that a search be carried out by chaining

through the nodes from the first node of the list. But this requirement does not exist for a circular list, since
the search for the predecessor of node X can be initiated from X itself.

▪ Concatenation and splitting becomes more efficient.

Disadvantages

 ▪ The circular linked list requires extra care to detect the end of the list. It may be possible to get into an
infinite loop. So it needs a header node to indicate the start or end of the list.

Definition

 ▪ A circular linked list is one, which has no beginning and no end. Circular linked list is a list in which every
node has a successor; the "last" element is succeeded by the "first" element. We can start at any node in the
list and traverse the entire list.

DOUBLY LINKED LIST
Definition

 ▪ Doubly linked list is a linked list in which each node is
linked to both its successor and its predecessor. In a doubly
linked list, the nodes are linked in both directions. Each
node of a doubly linked

list contains three parts:

o Info: the data stored in the node
o Next/FLink: the pointer to the following node.
o Back/BLink: the pointer to the preceding node

Why doubly linked list?

▪ In singly linked list, it is difficult to perform traversing the list in reverse.

▪ To delete a node, we need find its predecessor of that node.

Advantages

▪ Traversing in reverse is possible.

▪ Deletion operation is easier, since it has pointers to its predecessor and successor.

.
 ▪ Finding the predecessor and successor of a node is easier.

➢ Disadvantages

▪ A doubly linked list needs more operations while inserting or deleting and it needs more space (to store

the extra pointer). There are more pointers to keep track of in a doubly linked list. For example, to insert a
new node after a given node, in a singly linked list, we need to change two pointers. The same operation on
a doubly linked list requires four pointer changes.

DOUBLY CIRCULAR LINKED LIST
➢ Why doubly circular linked list?

The aim of considering doubly circular linked list is to simplify the insertion and deletion operations performed
on doubly linked list.

➢ Definition

A circular linked list is one, which has no beginning and no end. A doubly circular linked list is a doubly linked
list with circular structure in which the last node points to the first node and the first node points to the last node
and there are two links between the nodes of the linked list. In doubly circular linked list, the left link of the
leftmost node contains the address of the rightmost node and the right link of the rightmost node contains the
address of the leftmost node.

A Doubly Linked List

APPLICATIONS OF LINKED LIST
All kinds of dynamic allocation related problems can be solved using linked lists. Some of the applications are
given below:

1. Polynomial ADT

2. Radix sort or Card sort

3. Multi-list

4. Stacks and Queues

Linked list implementation of stack
The limitations of array implementation can be overcome by dynamically implementing (is also called

linked list representation) the stack using pointers.In linked list implementation, the stack does not need to be of
fixed size. Insertions and deletions are done more efficiently. Memory space also not wasted, because memory
space is allocated only when it is necessary (when an element is pushed) and is de-allocated when the element is
deleted.

 .

.

Push operation

Pop operation

Linked list implementation of Stack
void push(int x);
void pop();
void display();

struct node
{

int data;
struct node *next;

} *top = NULL;

typedef truct node * position;

void push(int x)
{

position p;
p =(struct node *)malloc(sizeof(struct node));
if (p == NULL)

printf("Memory allocation error \n");
else
{

if (top == NULL)
{

top =(struct node *)malloc(sizeof(struct node));
p->data=x;
p->next = NULL;
top->next = p;

}
else
{

p->data=x;
p->next = top->next;
top->next=p;

}
}

}

 .

.

void pop()
{

position p;
p = top->next;

if (top == NULL)
printf("Stack is empty");

else
{

top->next= top->next->next;
printf("\n Popped value : %d\n", p->data);
free(p);

}
}

void display()
{

struct node *p;
if (top == NULL)

printf("Stack is empty");
else
{

p = top;
while(p != NULL)
{

printf("\n%d", p->data);
p = p->next;

}
}

}

Linked list implementation of Linear Queue

 .

Linked list implementation of Linear Queue
struct node
{

int data;
struct node *next;

} *front = NULL, *rear=NULL;

typedef truct node * position;

void enqueue(int x);
void dequeue();
void display();
int item;

struct node
{

int data;
struct node *next;

} *top = NULL;

typedef truct node * position;

void dequeue()
{

position p;
p = front->next;

if (front == NULL)
printf("Queue is empty\n");

else
{

printf("\n Dequeued value : %d\n", p->data);
front->next=front->next->next;
free(p);

}

}

void display()
{

position p;
p = front->next;

if (front == NULL)
printf("Queue is empty\n");

else
{

printf("Queue elements are : \n");
while (p != NULL)
{

printf("%d ",p->data);
p = p->next;

}
}

}

APPLICATIONS OF STACKS
▪ Recursion - Example, Factorial, Tower of Hanoi.

▪ Balancing Symbols, i.e., finding the unmatched/missing parenthesis. For example, ((A+B)/C and

(A+B)/C). Compilers often use stacks to perform syntax analysis of language statements.

▪ Conversion of infix expression to postfix expression and decimal number to binary number.

▪ Evaluation of postfix expression.

▪ Backtracking- For example, 8-Queens problem.

▪ Function calls - When a call is made to a new function, all the variables local to the calling routine need to
be saved by the system, since otherwise the new function will overwrite the calling routine's variables.
Similarly the current location in the routine must be saved so that the new function knows where to go after
it is done. For example, the main program calls operation A, which in turn calls operation B, which in turn
calls operation C. When C finishes, control returns to B; when B finishes, control returns to A; and so on.
The call-and-return sequence is essentially a LIFO sequence, so a stack is the perfect structure for tracking
it.

Conversion of infix expression into postfix expression
1. Scan the infix expression from left to right. Repeat Steps 3 to 6 for each element of expression until the

stack is empty.

2. If an operand is encountered, add it to the postfix expression.
3. If an opening parenthesis is encountered, push it onto the stack and do not remove it until closing

parenthesis is encountered.

4. If an operator 'op' is encountered, then
a. Repeatedly pop from stack and add each operator (on the top of stack), which has the same

precedence as, or higher precedence than 'op'.
b. Add 'op' to stack.

5. If a closing parenthesis is encountered, then
a. Repeatedly pop from stack and add to postfix expression (on the top of stack) until anopening

parenthesis is encountered.
b. Remove the opening parenthesis from the stack. [Do not add the opening parenthesis to postfix

expression.]

Operator precedence
(Highest
^ -

*, / -
+, - Least

➢ Evaluation of postfix expression

1. Scan the postfix expression from left to right and repeat steps 2 & 3 for each element of postfix

expression.

2. If an operand is encountered, push it onto the stack.

3. If an operator 'op' is encountered,

a. Pop two elements from the stack, where A is the top element and B is the next top element.

b. Evaluate B 'op' A.

c. Push the result onto stack.

4. The evaluated value is equal to the value at the top of the stack.

Balancing parenthesis

▪ One common programming problem is unmatched parenthesis in an algebraic expression. When

parentheses are unmatched, two types of errors can occur:

o Opening parenthesis can be missing. For example, [A+B]/C}.
o Closing parenthesis can be missing. For example, {(A+B)/C.

▪ The steps involved in checking the validity of an arithmetic expression

1. Scan the arithmetic expression from left to right.

2. If an opening parenthesis is encountered, push it onto the stack.

3. If a closing parenthesis is encountered, the stack is examined.
a. If the stack is empty, the closing parenthesis does not have an opening parenthesis. So the

expression is invalid.
b. If the stack is not empty, pop from the stack and check whether the popped item corresponds to

the closing parenthesis. If a match occurs, continue. Otherwise, the expression is invalid.
4. When the end of the expression is reached, the stack must be empty; otherwise one or more opening

parenthesis does not have corresponding closing parenthesis. So the expression is invalid.

Polynomial ADT

Polynomials are expressions containing terms with non-zero coefficients and exponents. Linked list is
generally used to represent and manipulate single variable polynomials. Different operations, such as
addition, subtraction, division and multiplication of polynomials can be performed using linked list. In this
representation, each term/element is referred as a node. Each node contains three fields namely,

1. Coefficient - Holds value of the coefficient of a term.

2. Exponent - Holds exponent value of a term.

3. Link - Holds the address of the next term.

For example,

➢ Multi-list

Multi-list is the most complicated applications of linked list. It is useful to maintain student

registration in a university, employee involvement in different projects etc. The student registration contains
two reports. The first report lists the registration for each class (C) and the second report lists, by student, the
classes that each student (S) is registered for. In this implementation, we have combined two lists into one.
All lists use a header and are circular. Circular list saves space but does so at the expense of time.

Polynomial Addition

Type Declaration:

struct node

{

int coeff;

int pow;

struct node *next;

}*poly1=NULL,*poly2=NULL,*poly=NULL;

void polyadd(struct node *poly1,struct node *poly2,struct node *poly)

{

while((poly1->next !=NULL)&& (poly2->next!=NULL))

{

if(poly1->pow > poly2->pow)
. {

poly->pow=poly1->pow;

poly->coeff=poly1->coeff;
poly1=poly1->next;

}

else if(poly1->pow<poly2->pow)

{

poly->pow=poly2->pow;

poly->coeff=poly2->coeff;

poly2=poly2->next;

}

else

{

poly->pow=poly1->pow;

poly->coeff=poly1->coeff+poly2->coeff;

poly1=poly1->next;
poly2=poly2->next;

}

poly->next=(struct node *)malloc(sizeof(struct node));

poly=poly->next;

poly->next=NULL;

}

while(poly1->next !=NULL)

{

poly->pow=poly1->pow;

poly->coeff=poly1->coeff;
poly1=poly1->next;

}

while(poly2->next!=NULL)

{

poly->pow=poly2->pow;

poly->coeff=poly2->coeff;

poly2=poly2->next;

}

}

 .

